

SecureCom and CMDS Enterprise

Stopping Insider Abuse and Spying

Detecting the hard stuff:
Stolen passwords, unauthorized records browsing, employee espionage, infiltration, and insertion of unwelcome code

via automatic behavior profiling

Dave Steinman, Mike Celiceo, Joe Head
ODS Networks

Form SF298 Citation Data

Report Date ("DD MON YYYY") 03061999	Report Type N/A	Dates Covered (from to) ("DD MON YYYY")		
Title and Subtitle		Contract or Grant Number		
SecureCom and CMDS Enterp	rise	Program Element Number		
Authors		Project Number		
		Task Number		
		Work Unit Number		
Performing Organization Na IATAC Information Assurance 3190 Fairview Park Drive Falls	Technology Analysis Ce	Performing Organization nter Number(s)		
Sponsoring/Monitoring Agen	cy Name(s) and Address	Monitoring Agency Acronym		
		Monitoring Agency Report Number(s)		
Distribution/Availability Stat Approved for public release, di				
Supplementary Notes				
Abstract				
Subject Terms				
Document Classification unclassified		Classification of SF298 unclassified		
Classification of Abstract unclassified		Limitation of Abstract unlimited		
Number of Pages 84				

REPORT DOCUMENTATION PAGE

Form Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

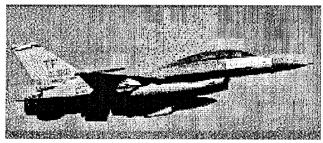
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

3. REPORT TYPE AND DATES CONTEST

4. Contest of this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this burden to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this burden to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing instructions, sea

1. AGENCY USE ONLY (Leave blank)		3. REPORT TYPE AND DATES COVERE	ED					
4. TITLE AND SUBTITLE	6/3/99	Briefing 5. FUNDING	MIMPEDS					
SecureCom and CMDS Ente	rnrice	5. FUNDING	NUMBERS					
Securecom and chibs Enter	ipiisc							
C AUTHOR(O)								
6. AUTHOR(S) Dave Steinman, Mike Cel	igoo Too Hood							
Dave Sceliman, Mike Cel	iceo, obe nead							
7. DEDECEMBLE OF CAME AT 10 M. MA	ME(0) AND ADDRESS(50)	0.05050000	10.0004117471011					
7. PERFORMING ORGANIZATION NA	ME(5) AND ADDRESS(ES)	8. PERFORMIN	IG ORGANIZATION JMBER					
IATAC								
Information Assurance Technology	y Analysis							
Center								
3190 Fairview Park Drive								
Falls Church VA 22042 9. SPONSORING / MONITORING AGI	ENCY NAME(S) AND ADDRESS(ES) 10 SPONSOP	ING / MONITORING					
5. SPONSORING / MONITORING AGI	ENCT NAME(S) AND ADDRESS(ES		REPORT NUMBER					
Defense Technical Information Co	enter							
DTIC-IA								
8725 John J. Kingman Rd, Suite 9	944							
Ft. Belvoir, VA 22060								
11. SUPPLEMENTARY NOTES		L						
12a. DISTRIBUTION / AVAILABILITY S	STATEMENT		12b. DISTRIBUTION CODE					
			1.20.21011112011011 0022					
			A					
13. ABSTRACT (Maximum 200 Words			i					
		g the insider abuse and sunauthorized records brows						
		welcome code via automation						
espionage, inilitration	, and insertion of un	welcome code via automatio	e behavior profiffing					
44 CUD IFCT TEDMS			45 NUMBER OF BACES					
14. SUBJECT TERMS COMP IA Biometrics			15. NUMBER OF PAGES					
14. SUBJECT TERMS COMP, IA, Biometrics			15. NUMBER OF PAGES 16. PRICE CODE					
COMP, IA, Biometrics	18 SECURITY OF ASSISTED ATION	19 SECURITY OF ASSISTENTION	16. PRICE CODE					
COMP, IA, Biometrics	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT						


Agenda: Foiling the Bad Guys

- A quick look at the problem
- An integrated, deployable solution for:
 - Monitoring the network infrastructure
 - Monitoring hosts
 - Conversation monitoring and tracking
 - The truly hardened perimeter
 - The crypto element
 - User behavior analysis
 - THE BIG PROBLEM event correlation and management
 - New tools applied to an old problem
- What comes next. Scaling to Gigabit speeds.

Our Subject- Protection of:

Mission Critical Target Networks

Winning War Strategy

- Put up attacks that the enemy can't defend
- Put up offensive weapons systems for which the enemy can't afford the defensive system
- Strive for large asymmetry: 1 cent attack, \$100 defense

Threats to Your Network

Natural

- •fires
- •floods
- earthquakes
- hurricanes
- •extreme heat
- extreme cold

Threat

Unintentional

Errors, Omissions

- •software bugs
- system overloads
- @hardware failures
- poorly trained administrators
- •errors and accidents/
- *uniformed and/or/untrained staff

Intentional

Outsider

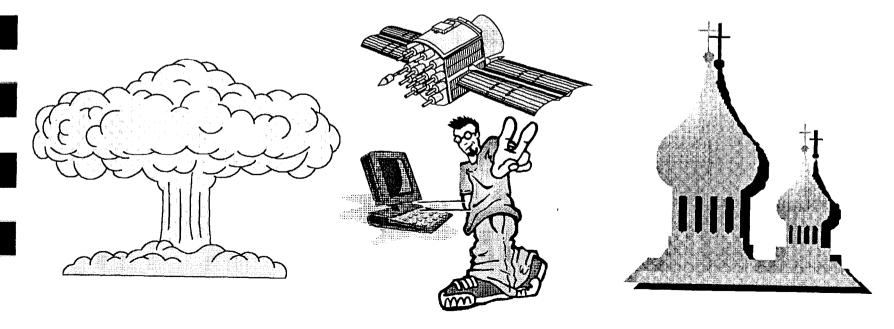
- •malicious hacker
- •spy
- *disgruntled former employee

Insider

- dishonest or disgruntled employee
- outsource employee or contract employee
- @partner, vendor, VAR

@tampering@availability*destruction

*access


*abuse

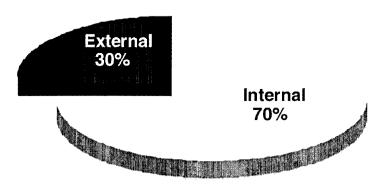
Source: National Defense University

How We Got Here

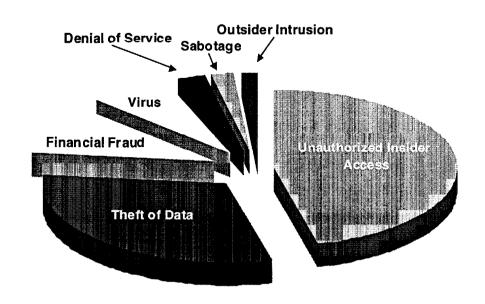
- Failing to define the enemy
 - Electronic Pearl Harbor Scenario vs espionage
 - military adversaries vs hackers with shared tools
 - Presence of all 4 creates need for multi-phased defense

Pearl Harbor Scenario

- Who won't
 - Those most likely to be able to
 - Professional corporate spies
 - Intelligence organizations
 - Hackers, spies, and thieves don't harm the Internet, it nukes their sandbox
- Who might:
 - A terrorist group
 - Fringe psychopaths
 - Journeyman invaders
 - Tactical theater enemies


Covert Cyber Intelligence against the US Infrastructure

- Attacks against sensitive but unclassified systems is:
 - relatively easy
 - effective
 - non-traceable
 - deadly
 - cheap labor pool ready for work
 - bad asymmetry in both\$ and expert people



Attack Statistics

- Percentage 1997 dollar losses for computer and network security events by cause:
 - 46% insider misuse
 - 32% data theft
 - 11% financial fraud
 - 7% virus attacks
 - 2% sabotage
 - 2% outsider penetration

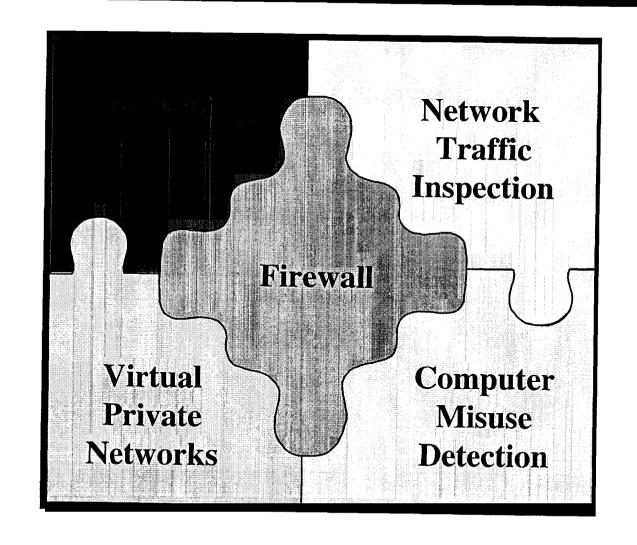
- 70% of security events are by insiders
- Our networks have a hard, crunchy exterior with a soft, squishy interior
- Most security expenditures attempt to solve the wrong problem

The smartest penetrators

- Military or Intelligence staff
- Mercenary hackers who are Warsaw ex-intel
- Target troop, movement, plans, and logistics data
- Steal advanced research and planning data
- Never use shared tools
- Heavy use of spoofing, twin sessions, stolen sessions
- More likely to evade Firewalls and IDS systems

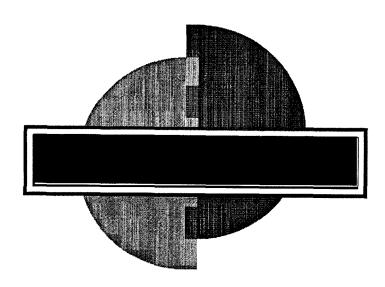
Defining the Enemy

- Motivations and methods
 - Amateur hackers versus strong, well funded adversaries
 - Attacks versus industrial espionage
 - Mischief versus strategic data collection
 - Commonly available hacker tools versus proprietary tools
 - The bad guys we easily detect versus the bad guys we never see
- We need to protect against all threats, inside and outside.

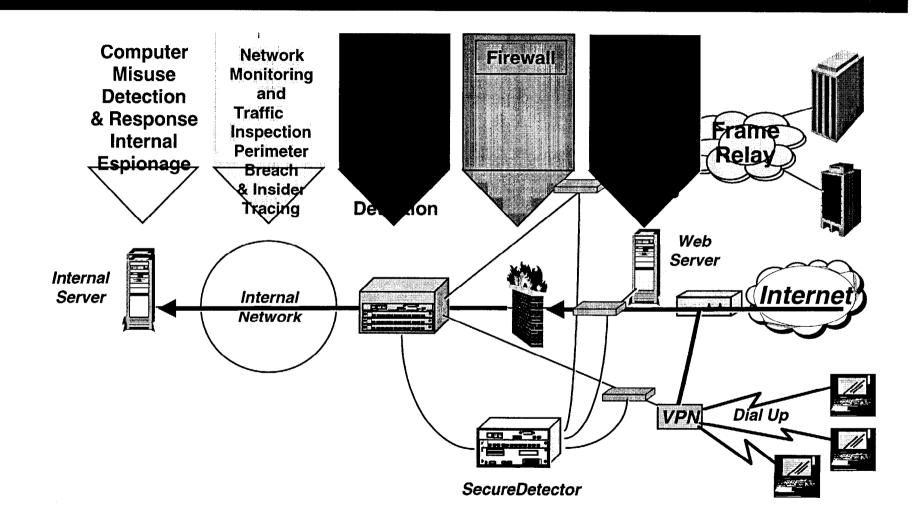

An Integrated Infrastructure Defense

A Modular, Scalable, Layered, Coordinated Multi-vendor Defense

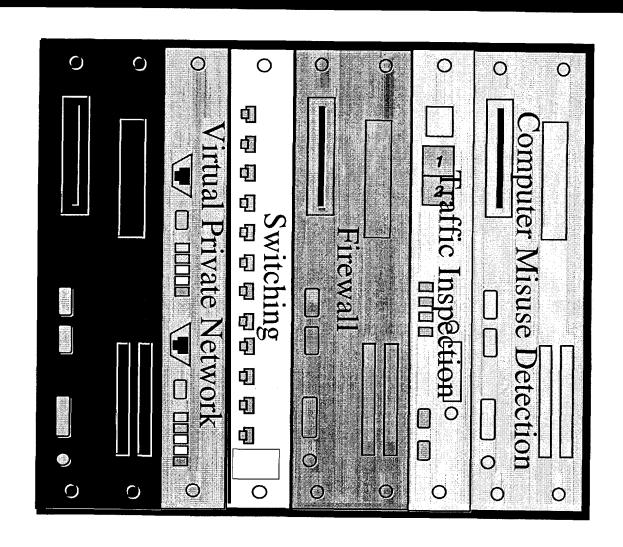
> Joe Head head@ods.com 972/301-3636



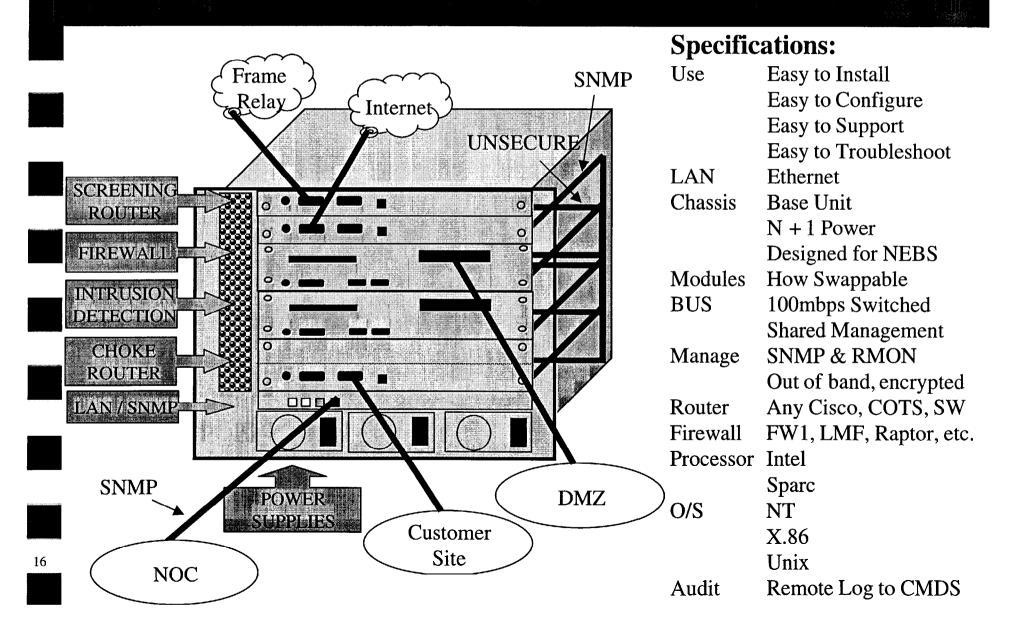
Enterprise Network Security


Extreme Access . . . Infinite Possibilities

A Field Deployable, Modular, Scalable Multivendor Security Solution

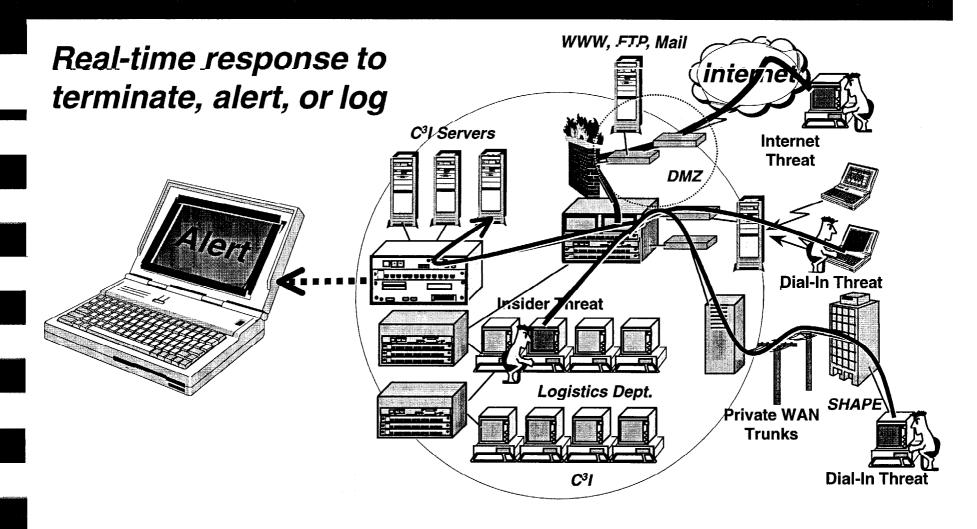


SecureCom Integrates Protection At All Critical Places



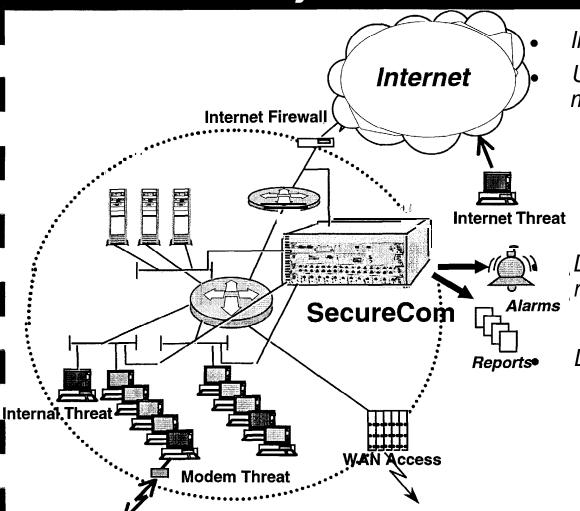
ODS Networks SecureCom Platform

SecureCom; Internet Security Device



SecureCom Benefits

- Small footprint: easy deployment DMZ in a box, LAN in a can
- Any Cisco router, any Firewall, any IDS, plus all NT, Solaris, Linux, or HP/UX application
- multiport conditional I-way forwarding to any IDS


RealSecure or NetRanger Threat Detection & Response

Get more for your money, monitor multiple segments with one license!

Using the SecureCom as a multisegment internal attack Detection System

Intrusion Detection

Unobtrusive network security monitoring

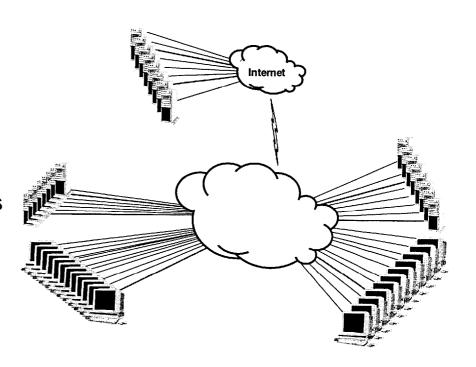
- Monitors data centrally
- Only one detection system is needed for multiple segments
- Cannot be detected

Delivers real-time security response

Terminates, Alerts, or Logs

Delivers security auditing

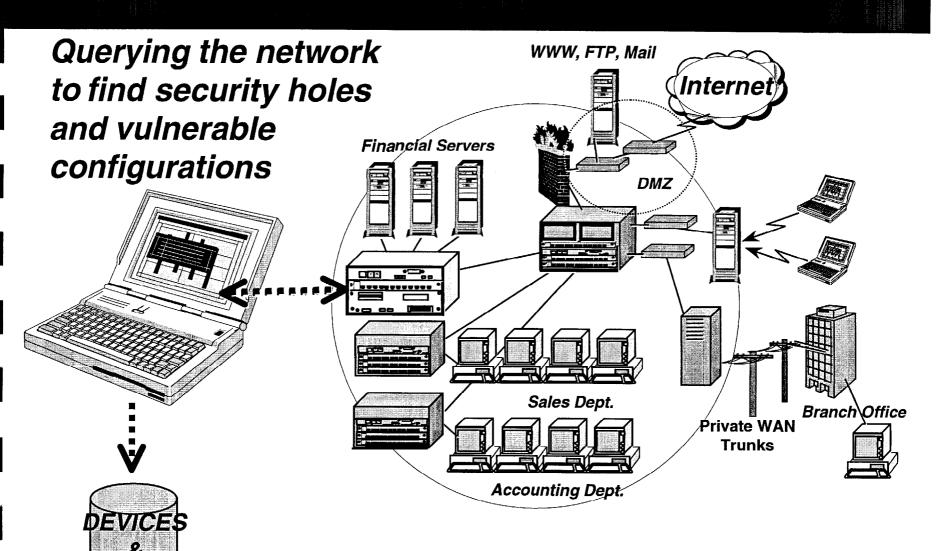
Identifies, Alerts, & Audits workgroups


Making RealSecure and NetRanger More Usable

- ODS multiport listening mode multiplies the number of segments monitorable by an \$8,000 or \$23,000 IDS. These prices are way to expensive to monitor every T1 circuit with a separate IDS license. Embedded with an ODS SecureSwitch, many segments may be protected by a single IDS.
- CMDS Enterprise is very helpful to both eliminate false alarms and develop expert profiles of user behavior.
- ODS conversation analysis allows the consideration of "non-attack" traffic into the mix, this is essential since both RealSecure and NetRanger are reactive only (template based detection).

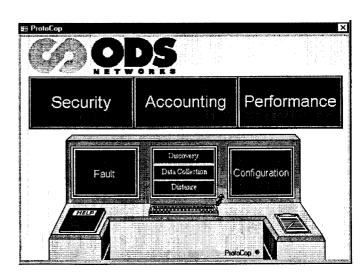
Conversation Monitoring

- Keeping track of who is talking to who is a good idea
 - Nature of alien conversations
 - Telnet, Rlogin, RPC, etc.
 - Non-web applications
 - Byte Symmetry
 - FTP net data outflow
 - Workstations acting as servers
 - Competitors
 - Workstation to workstation activity
 - Win 95 file sharing detection



	Src Domain	Dest Domain	Src IP	Dest IP	Server IP	SD Pkts	SD Bytes	DS Pk
•	SATNET	ODS-NET	4.0.1.38	10.10.75.50	10.10.75.50	3	222	2
	SATNET	ODS (DAKNET)	4.0.1.38	192.94.73.11	192.94.73.11	4	296	
	SATNET	ODS-NET	4.1.16.4	10.10 12 7	40.10/3.7	198	1950	
	SATNET	ODS (DAKNET)	4.1.16.4	192.9	ich De	?VICO	S 78529	erv
	HP-INTERNET	ODS (DAKNET)	15.255.16.2	192.94.73.29	15.255.16.2	2563	244287	
	DEC-INTERNET	ODS-NET	16.1.0.18	10.10.13.7	16.1.0.18	175	59133	
	DEC-INTERNET	ODS-NET	16.1.0.18	10.10.100.132	10.10.100.132	1388	687324	7
	DEC-INTERNET	ODS (DAKNE	16.1.0.18	192.94.73.14	192.94.73.11	5433	2690486	7 §
	DEC-INT NET	ODS (DAKNE	16.1.0.19	192.94.73	16.1.0.19	5413	2690032	× × × × × × × × × × × × × × × × × × ×
	DEC-INTER LET	ODS (DAKIY .T)	16.1.16.88	192.94.73.1	192.94.73.11 192.94.73.11	Ü	1026 1485	
	DEC-INTERNET	ODS (DAK .ET)	16.5.0.1	192.94.73.11	192.94.73.11	3	1485	į.
	DEC-INTERN T	ODS-NET	16.57.16.6	10,10,100,13	10.10.100.132	4	641	<u> </u>
	APPLE-WWN	ODS (D KNET)	17.254.0.50	192.94.73.11	192.94.73.11	237	38750	
	MIT	ODS-1) ET	18.52.0.20	10.10.13.138	10.10.13.138	4	721	à
	MIT	DDS ÆT	18.52.0.20	10.10.24.35	18.52.0.20	39217	22188157	
	urce	OF & CDAKINZ)	MAKA	9234.73.11	<u>192</u> .94.73.11	243	<u>4</u> 5181	_ 1
	MAI CC	ODS-NET	10.71.0.151	0.40.13.7	192.94.73.11 Destir	nati o i	103657	1dd
50 S 60 S 90 K	MIT_	ODS (DAKNET)	18.71.0_151	192.94.73.11	132.94.73.11	<i>ialiy</i> _j	36690	144
6		mair	18. AU21	13.138	10.10.13.138	8	1947	71 🕽
	MIT	ODS-NET	18.224.0.151	10.10.13.138	18.224.0.151	20	16617	(A)
	MIT_	ODS-NET	18.224.0.151	10.10.13.138	18.224.0.151	29	13488	3
	MIT	ODS (DAKNET)	18.224.0_151	_192.94.73 <u>.</u> 11	192.94.73.11	2	164	
	csc 📮		DC1.93	19234.71.2	Talkir	na to	1//1992	m
	csc 📕	GOS (DAKNET)	20.7.1.9	192.94.73.29				
	ATHOME	ODS (DAKNET)	24 3 89 76	192 <u>94 73</u> 29	24.3.89.76	1,390	127614	
Re	cord: [4] 41	1 1110	⊎VV ha	tulbe	24.3.89.76 4.4.6	1)oin	a	H
Di	stasheet View				/ /			

USERS


Internal Network Monitoring with SNMP/RMON

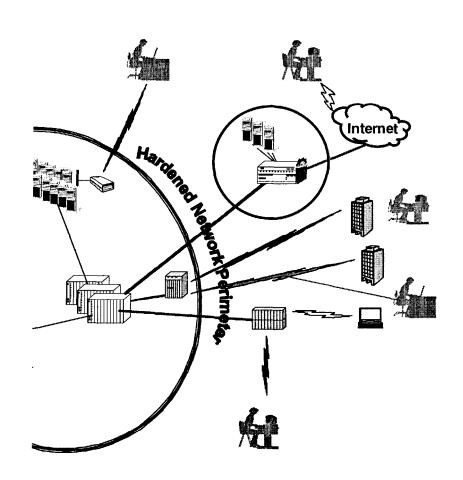
All 5 ISO Network Management Categories

- Data-centric, not device-centric management
 - Delivers network inventory
 - Collects data from any SNMP-managed device
 - Identifies problems by category regardless of device brand, type or location
 - Provides standard & customizable reporting on collected data
 - Security
 - Configuration
 - Fault
 - Performance
 - Accounting

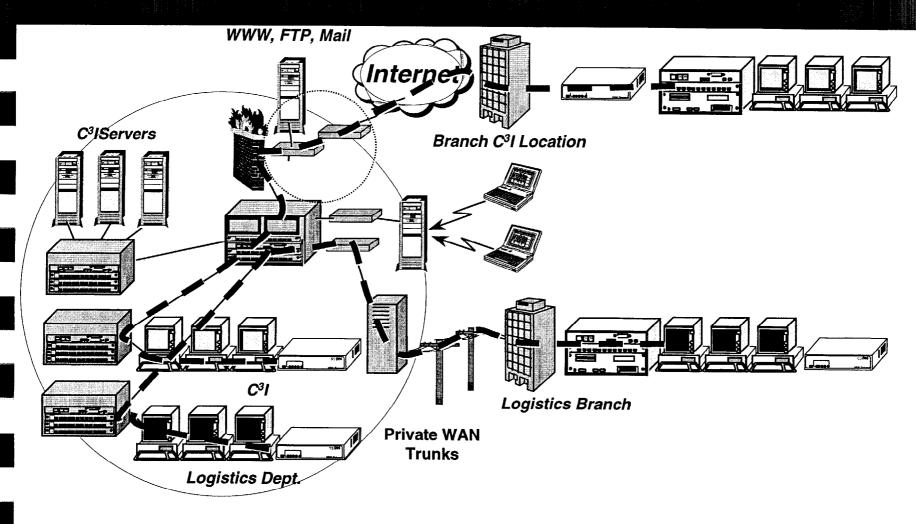
Elements of a Layered Defense

External Threats:

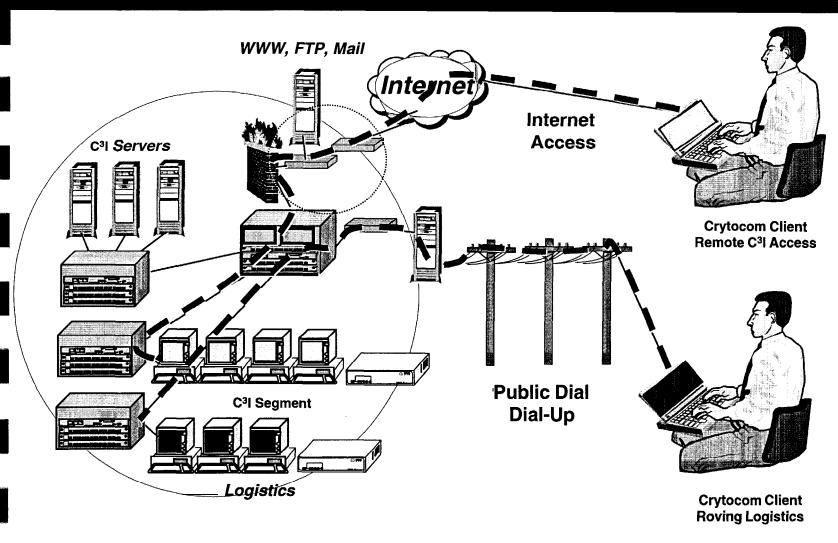
- Screening Router
- Auditing of DMZ assets: Mail, Web, FTP
- Firewall plus IDS
- Authenticated remote users VPN, defense against cryptographic attacks and traffic analysis
- Firewall and VPN leak detection, audit, and user profiling
- Back door detection


Internal Threats:

- Internal IDS
- Protection against clever VPN attacks: spoof, twin, theft, bandwidth, replay, cryptographic, traffic analysis
- Network Conversation analysis
- Host conversation analysis
- Internal authentication, compartmentalization *
- Using existing, rich data sources: logs from routers, switches, hosts, workstations
- Security policy audit and enforcement
- Statistical behavior analysis for habit changes from norm
- Users compared to group bell curves: The Ames detector


Hardening the non-existent Perimeter

- We all know more than a firewall is necessary
- Deploy:
 - Host OS-based monitoring
 - Application-based monitoring
 - · Web, SMTP, FTP, Firewall
 - Router log analysis
 - Modem back door protection
 IDS on WAN and RAS links
 - Two-factor crypto authentication
 - . Strong crypto over the Internet
 - Cross compartment authentication


Protect, Compress, Eliminate Your Expensive WAN Trunks

Per Packet: Cryptographic Authentication, salt, and sequence numbers

The Remote User: Per Packet Authentication, Ames/duress Detection too!

Competitive Generalizations

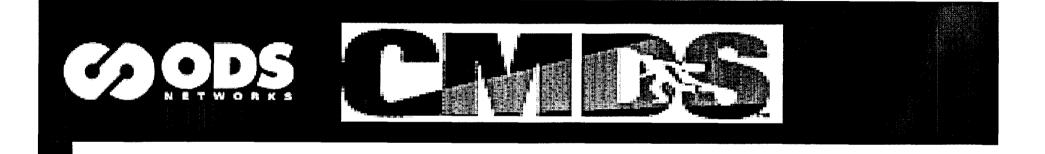
- Most "remote access" products are for dial-up and/or are media dependent.
- Most of their security features are limited to weak authentication (of the user) upon first part of connection only.
- Very few support "home network" configuration. (Key to back door detection.)
- Serious security flaws. Lacking: Salt values, hardware key generation, sequence numbers as additional salt to prevent replay.
- Most VPN solutions are not designed for resistance against serious enemies.

What strengths does CryptoWatch have?

- 1024 bit RSA signatures of SHA-1 or MD5
- Idiot proof operation
- IDEA, Triple DES, and new keys every 60 seconds.
- Low cost
- Works across any WAN, dial, ISDN, FR, X.25, ADSL ,...
- Works on any LAN,
- Built in compression, pre-encryption...
- Approvals and history in compartmentalized environments.
- Export approval for strong crypto without key escrow, key recovery, or the need for prior export licenses to customers in 44 countries.

Two Halves of the Security Solution

Network Data


- Provides a Network Perspective
- Cannot identify what happened host state awareness lacking
- Is rendered less useful when encrypted
- Is essential to prove any case non-repudiation requires trace

Host Data

- Provides exact log of what happened
- Tracks Who, What & When
- Cannot Identify Where a User really is
- Is the richest source of data and is still completely useful for monitoring criminal use of encrypted communications

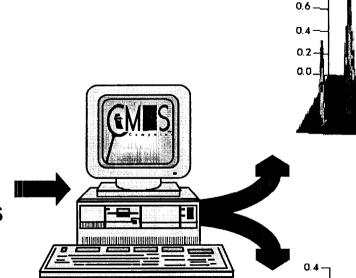
Integration provides a common view of suspicious traffic & corresponding illegal user activity

Computer Misuse Detection System

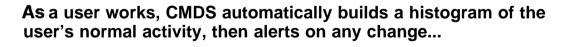
Intrusion Detection

Data Forensics

Audit Management


Internal Audit, Data Rollup, then Proper Security Response

- Numerous inputs can be consolidated into a single management console
 - Intrusion Detection Systems
 - Firewalls
 - Host monitoring
 - Database access
 - Application logs
 - Authentication
 - Dial-up access
- Response(s) can be automated based on enterprise correlation



Bringing it All Together Enterprise Security Console

- How to deal with the data issue:
- Megabytes generated everyday
- Large audit reduction requirement
- "Normalizing" the data across disparate systems
 - Log files OS, Firewalls, applications, RAS
 - Network infrastructure
 - Conversations
 - Behavioral anomalies
- Constant Change

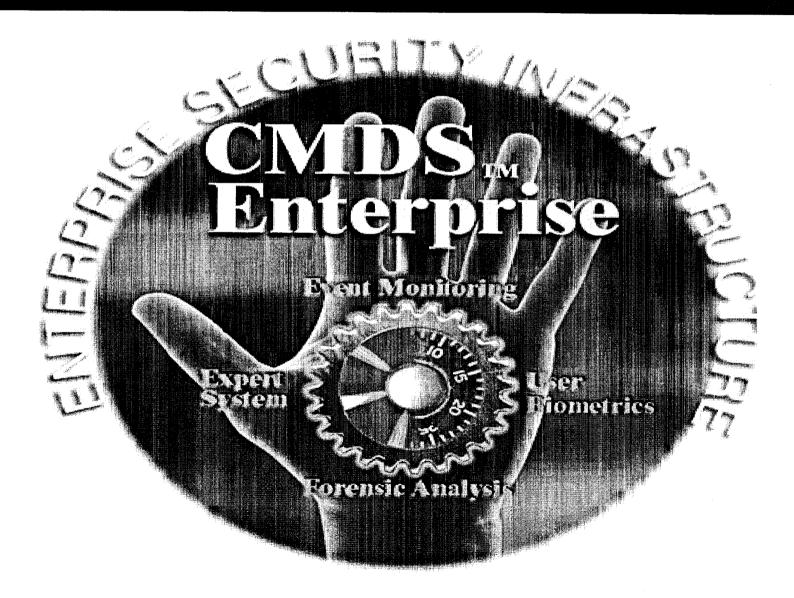
Normal

0.3

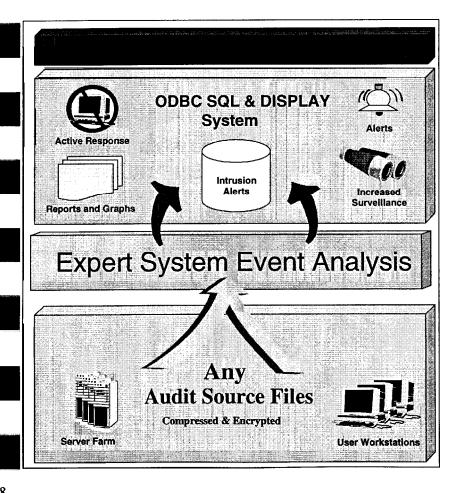
0.1

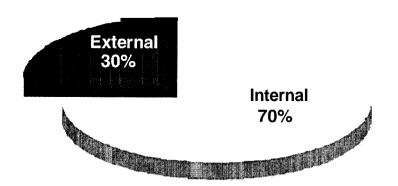
How to Solve the Data Issue

- CMDS correlates individual alerts and data
- Use relational database to store the data
 - Event-based schema
 - Use statistical behavioral profiling
- OLAP On-Line Analytical Processing
 - Allows analysis of very large data sets - correlation by:
 - Date/Time
 - Type of event
 - Location of event
 - Severity of event
 - Trend analysis
 - Modeling and prediction

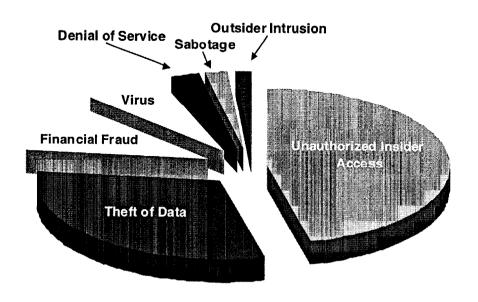


The Expert Security Solution


- Real Security Expertise is Rare
 - Too many issues, too few wizards
 - Critical mass issues, cost sharing of wizards
- Phased awareness
 - Initial requests for 2% problems: firewalls, IDS, VPN
 - 90% Solutions:
 Solving the insider problem, fraud, theft, and the like.
- Layered defenses are best.
- A wealth of security violation data lies dormant in your network, sometimes collected, but never methodically analyzed except after a major embarrassment.
- A Security Expert System is required to simplify the problem and perform the necessary data reduction, correlation, and isolation of security problems.


CMDStm Enterprise

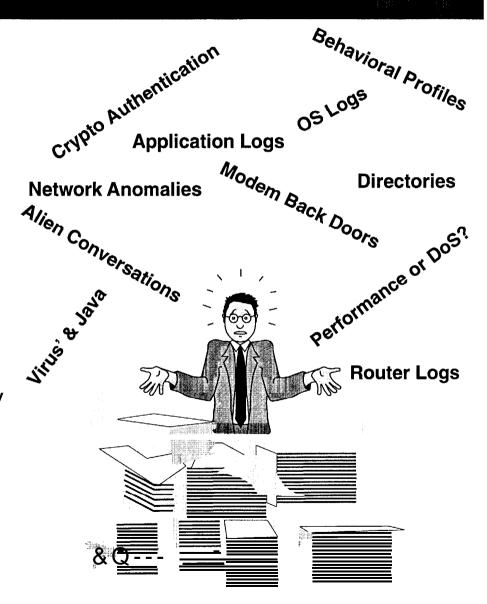
- CMDS is an expert system that monitors internal events in organizational Network(s).
- Currently monitors NT OS Audit Logs:
 - Impossible to do job manually
- Configurable to monitor events from:
 - Critical Applications
 - SQL DBMS'
 - Any Pertinent Data Sources
- Pro-active approach to security policy generation and management



Why CMDS Enterprise??

- Percentage of losses for computer and network security events by cause:
 - 46% insider misuse
 - 32% data theft
 - 11% financial fraud
 - 7% virus attacks
 - 2% sabotage
 - 2% outsider penetration

- 70% of security events are by insiders
- Our networks have a hard, crunchy exterior with a soft, squishy interior
- Most security expenditures attempt to solve the wrong problem



Problems Security Professionals Face Every Day

- Sifting through the massive amount of data quickly to find:
 - Patterns,
 - Anomalies or
 - Other indications of intrusions or attacks

- With CMDStm Enterprise, security officer's will be able to:
 - focus proactively on security
 policy management instead of auditing system event logs

COODS CMDS Enterprise Provides:

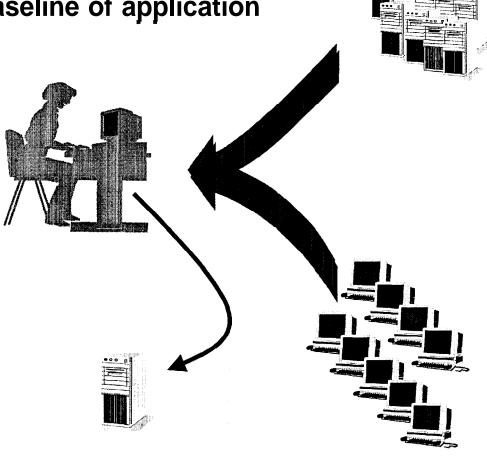
- Open Architecture
 - Supports standard SQL databases
 - Flexible and Extensible
- Highly Scalable Architecture
- User Behavior Fingerpriniting
- Expert System for Security Policy monitoring
- Universal Audit Parsing Interface
- Centralized Audit Management

CMDStm Enterprise Services

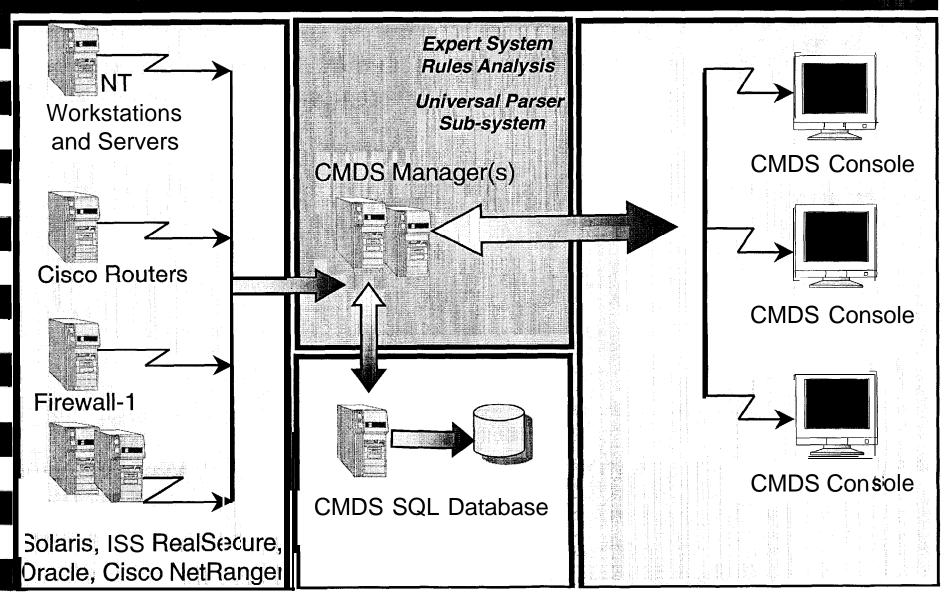
CMDStm Enterprise was designed to support the following services:

- Collection of operational audit from hosts and event data from any other system within the organization
- Encryption and reduction of operational audit when transmitted across the network
- Reformatting and parsing of virtually any audit source for event analysis
- Audit data log filtering
- Expert system analysis of filtered event logs for signs of known intrusions and attacks
- Behavioral and statistical profiling of definable categories for all users

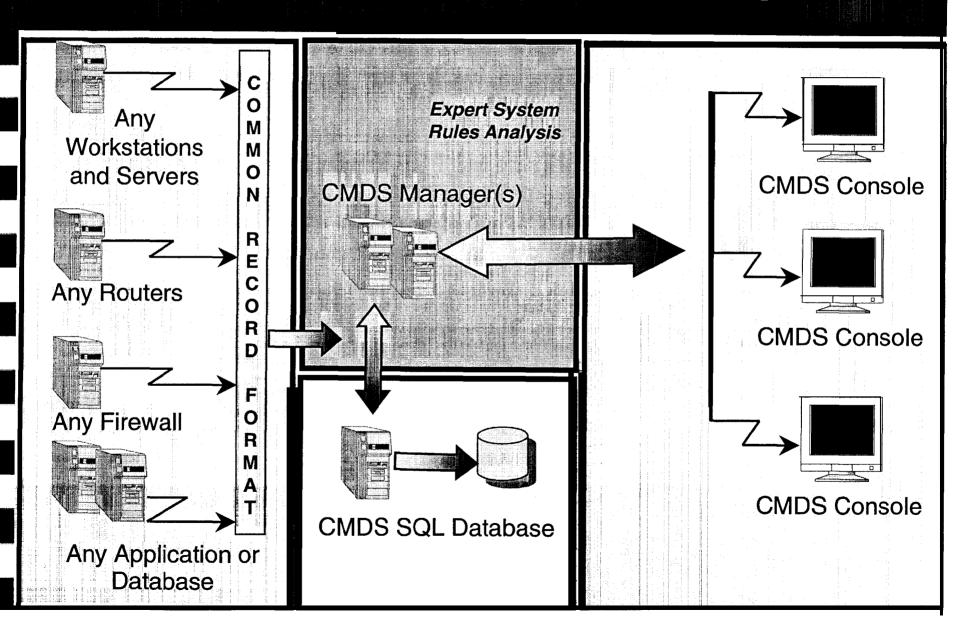
CMDStm Enterprise Services (CONT'D)


- SQL Database repository, includes management and maintenance
- Severity level classification, 0 5
- Generation of warnings, alerts
- Notification through pagers, email, Managers of Managers
- Command and Control through notification scripting
- Ad hoc query, filtering an sorting of event data
- Reporting and Charting
- Centralized audit management, includes archival and retrieval

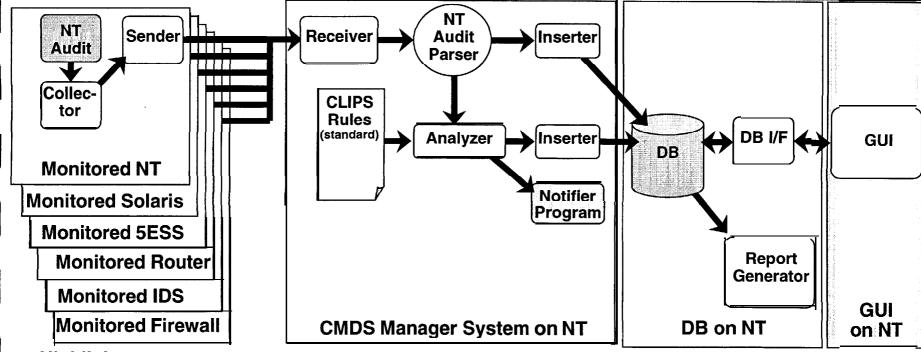
User Behavior Fingerprinting


 CMDS_{tm} Enterprise's Integrated statistical profiling engine dynamically builds a fingerprint of user behavior and automatically creates a baseline of application operations.

- Every user settles into an usage pattern over time
- CMDS_{tm} Enterprise detects when that pattern changes
 - Accesses to servers
 - Accesses to workstations
 - File Browsing
 - Nighttime activity
 - Peer group analysis

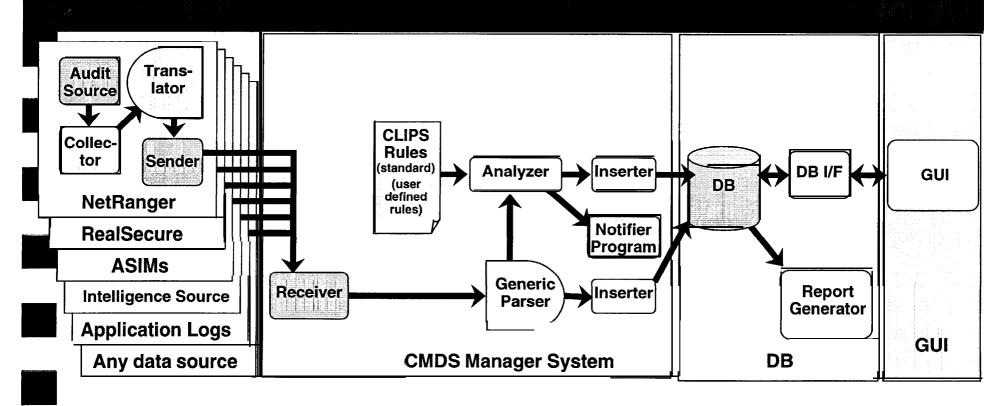


CMDStm Enterprise Architecture



CMDStm Enterprise Architecture (cont'd) Universal Parser Sub-System

Audit Analysis


Highlights:

- Multiple agents are monitored by a single CMDS Manager system
- •Expert System Rules find standard problems
- Activity profiler finds exceptions to each person's historical usage patterns
- •A criminal may fit his own historical pattern, but will stand out as a group behavioral exception.

Provided in CMDS 4.0	Direct reading of file by opening										
	Files transferred by directory										
User Developed	ODBC Interface										
3rd Party Vendor Developed	CORBA Interface										
	Secure CORBA using SSL										

ODS Universal Parser Process

Highlights:

- Translator on the client side reduces workload of the CMDS **Management system**
- Collector and Translator may be combined as a single process

Direct reading of file by opening
Files transferred by directory
ODBC Interface
CORBA Interface
Secure CORBA using SSL

Event Log

_ 8 ×

Log <u>D</u>ata Help

																					Z				

■ 5 Network

• 5 West Coast

5 Products&Sales

2 CARDIFF

O 3 CARLSBAD 5 DEL-MAR

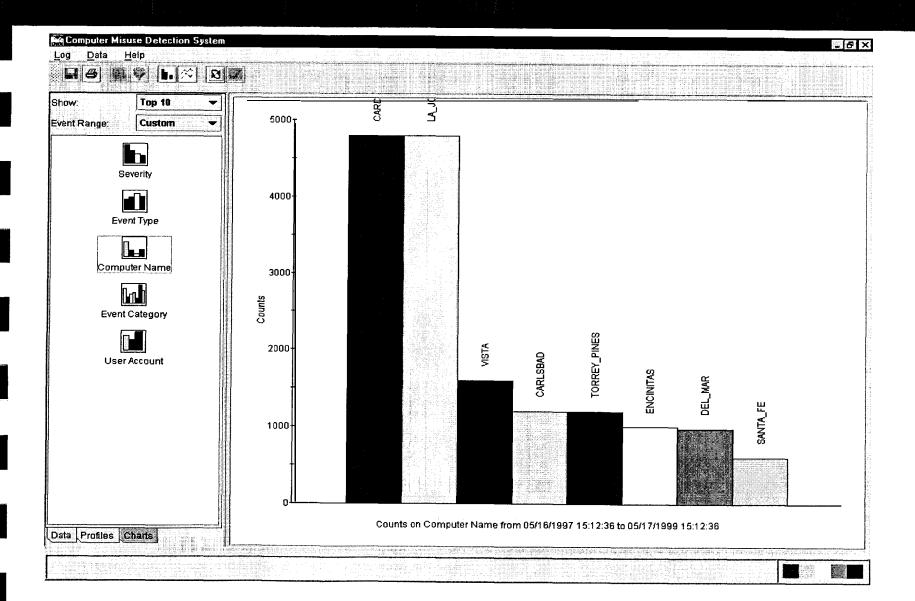
4 ENCINITAS

2 LA_JOLLA O 0 SANTA-FE

0 3 TORREY-PINES

1 VISTA

			Ev	ent Log		Version of		
		Severity	Operating System	Event Number	Event Type	ser Name	Computer Name	Ev
1	1999-01-25 15:29:42.000	3	nt	535	passed	ather	TORREY_PINES	loge
2	1999-01-2515;29;42,000	3	e t	627	pace	Heather	TORREY_PINES	accc
3	1999- m 25 15:29:42.000	3	nt	And the second	, used	Heather	TORREY_PINES	accc
4	1999-01-25 15:29:42.000	3	nt	625	passed	Heather	TORREY_PINES	acco
5	1999-01-25 15:29:42,000	3	nt	639	passed	Heather	TORREY_PINES	acco
6	1999-01-X 15:29:42.000	3	int	641	passed	Heather	TORREY_PINES	ассс
7	1999-01-25 15:29:36.000	3	nt	535	passed	George	TORREY_PINES	logd
8	1999-01-25 15:29:36.000	3	nt	627	passed	George	TORREY_PINES	acce
9	1999-01-25 15:29:36.000	3	nt	629	passed	George	TORREY_PINES	асс
10	1999-01-25 15:29 36.000	3.	nt	625	passed	George	TORREY_PINES	acci
11	1999-01-25 15:29:36.000	3	nt	639	passed	George	TORREY_PINES	acc
12	1999-01-25 15:29:36.000	3	nt	641	passed	George	TORREY_PINES	acc
13	1999-01-25 15:29:30,000	3	nt	535	passed	Frank	TORREY_PINES	logd
14	1999-01-25 15:29:30.000	3	nt	627	passed	Frank	TORREY_PINES	acco
15	1999-01-25 15:29:30.000	3	nt	629	passed	Frank	TORREY_PINES	acco
16	1999-01-25 15:29:30.000	3	nt	625	passed	Frank	TORREY_PINES	acco
17	1999-01-25 15:29:30.000	, 3	nt	639	passed	Frank	TORREY_PINES	acct
18 1	999-01-25 15:29:30.000	j 3	nt	641	/passed	Frank	TORREY_PINES	accc
19	,1999-01-25 15:29:24.000	3	nt	j 535	passed	Elizabeth	TORREY_PINES	logo
20	1999-01-25 15:29:24.000	3	nt	627	passed	Elizabeth	TORREY_PINES	acco
21	1999-01-25 15:29:24.000	3	nt	629	passed	Elizabeth	TORREY_PINES	acce
22	1999-01-25 15:29:24.000	3	nt	625	passed	Elizabeth	TORREY_PINES	ассс
23	1999-01-25 15:29:24.000	3 1	jnt	j639	passed	Elizabeth	TORREY_PINES	acce
24	1999-01-25 15:29:24.000	3	nt	641	passed	Elizabeth	TORREY_PINES	acco
25	1999-01-25 15:29:18.000	3	nt	535	passed	Danny	TORREY_PINES	logc
26	1999-01-25 15:29:18.000	3	nt	627	passed	Danny	TORREY_PINES	acco
27	1999-01-25 15:29:18.000	3	nt	629	/passed	Danny	TORREY PINES	ассс
28	1999-01-25 15:29:18.000	3	nt	625	passed	Danny	TORREY-PINES	acco
29	1999-01-25 15:29:18.000	3	nt	639	passed	Danny	TORREY-PINES	acco
20	11999-01-25 15:20:10 000	13	nt	6/1	naccod	Паппу	TOPREY PINES	Jacce 1


Data Profiles Charts

There are 16100 records in the result set. 500 record(s) loaded.

CMDS Charts

CMDStm Enterprise Reports

Alerts and Warnings by Machine Name

Alerts and Warnings by Event Type

Alerts and Warnings by User Name

Alerts and Warnings by Day

Alerts and Warnings by Week

Failed Directory/Failed Access by Machine Name

Failed Logins by Machine Name

Where CMDS Is Used Worldwide

U.S. Government

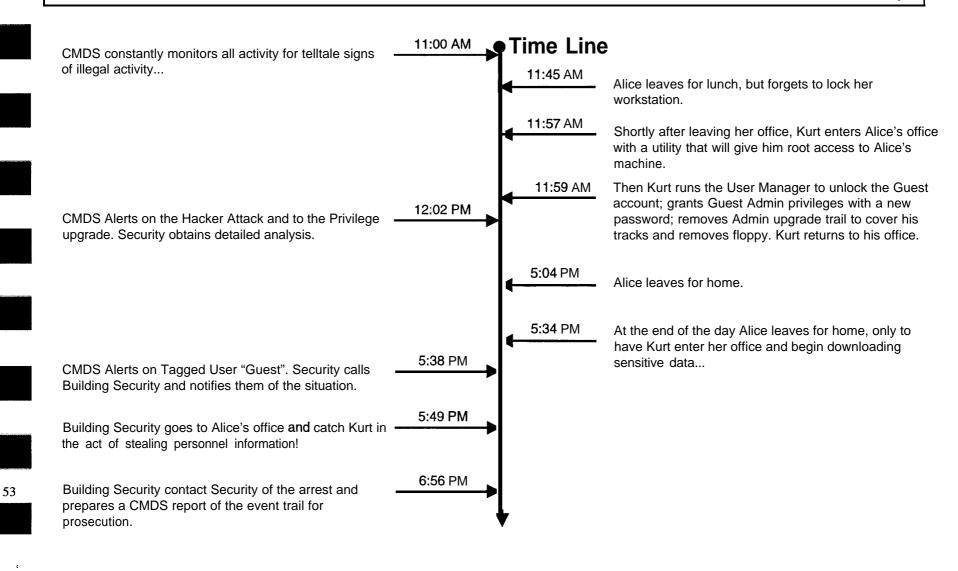
US. Federal AgenciesU.S. Department of Defense

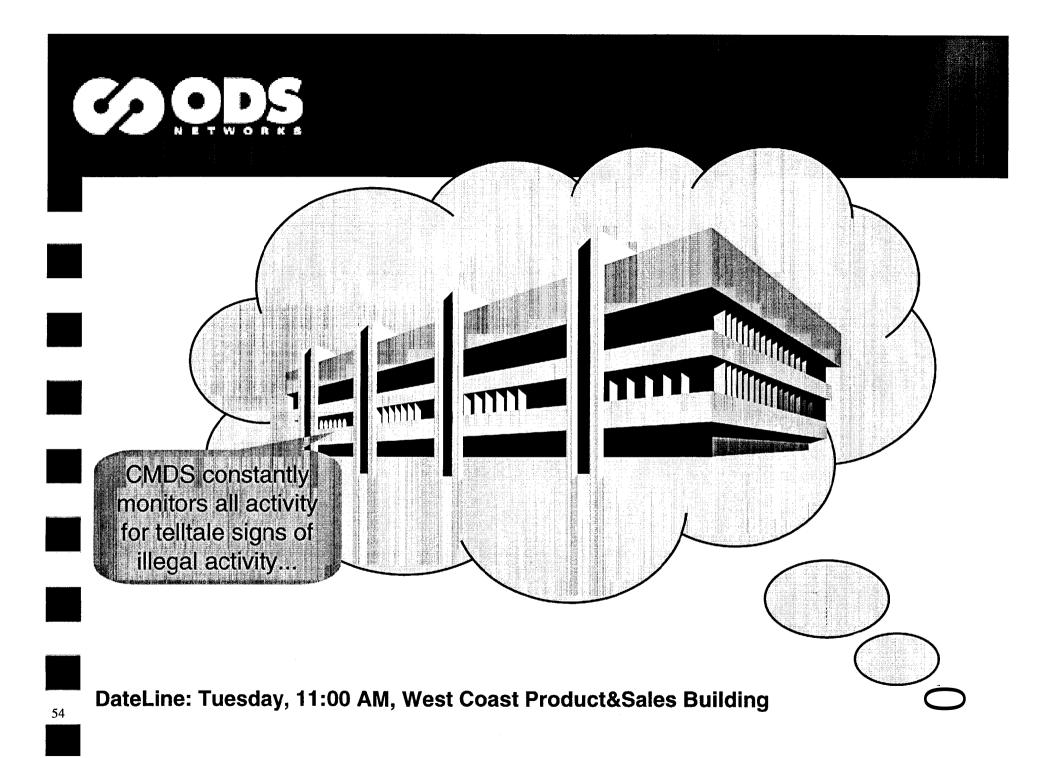
Foreign Countries

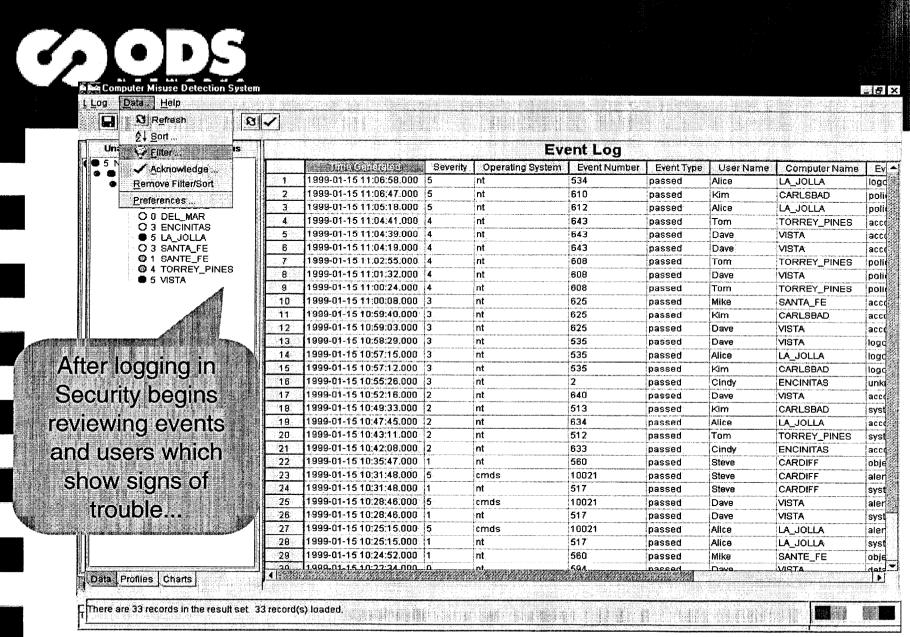
European Governments NATO

Pacific Rim Countries

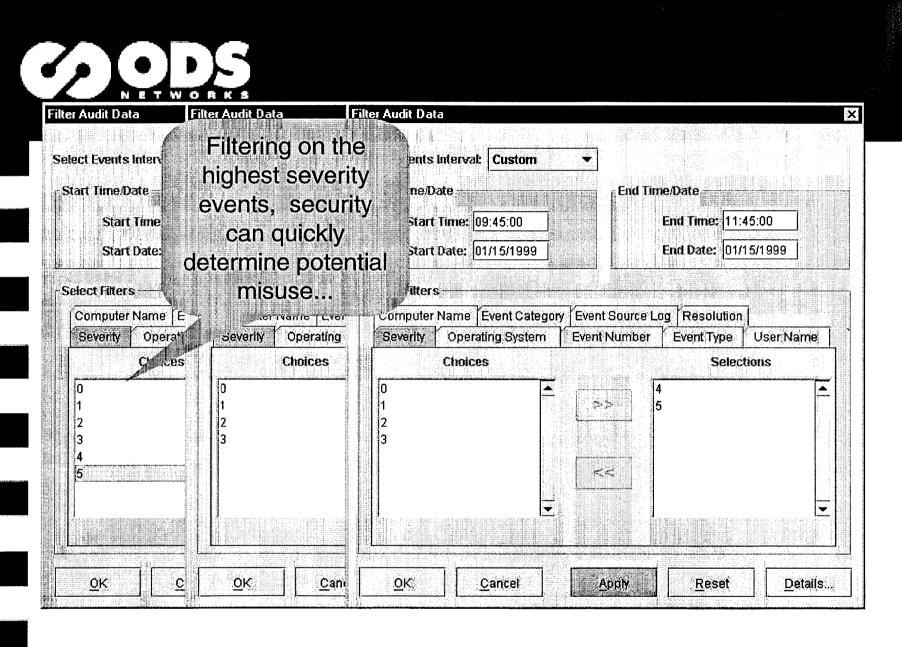
Australian Government Japanese Government

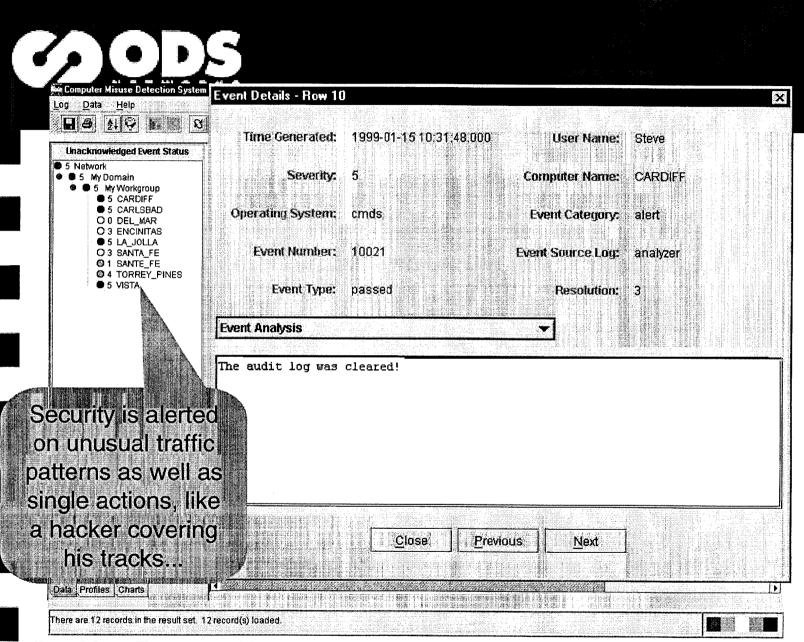

U.S. Commercial Organizations

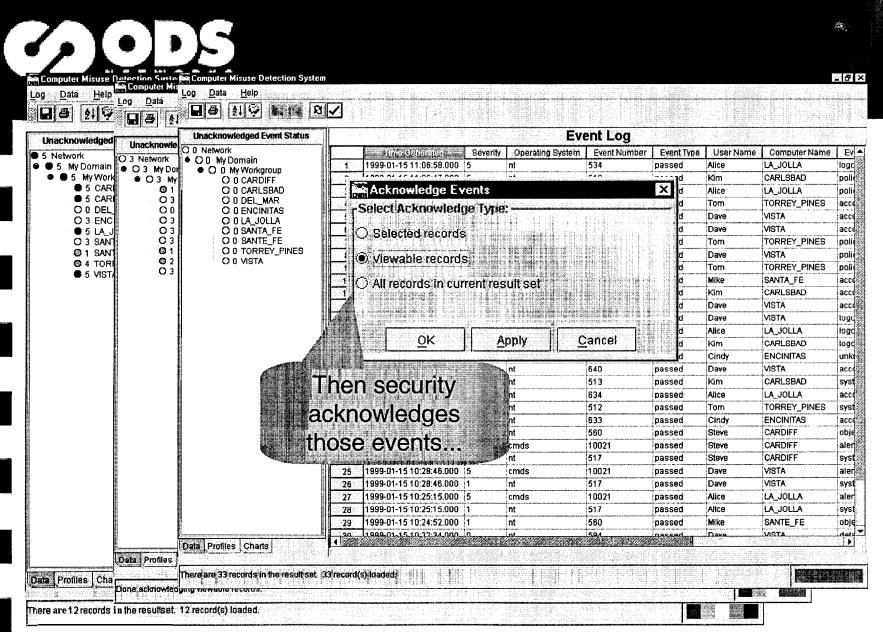

Telecommunications
Software Design Organizations
Financial Organizations

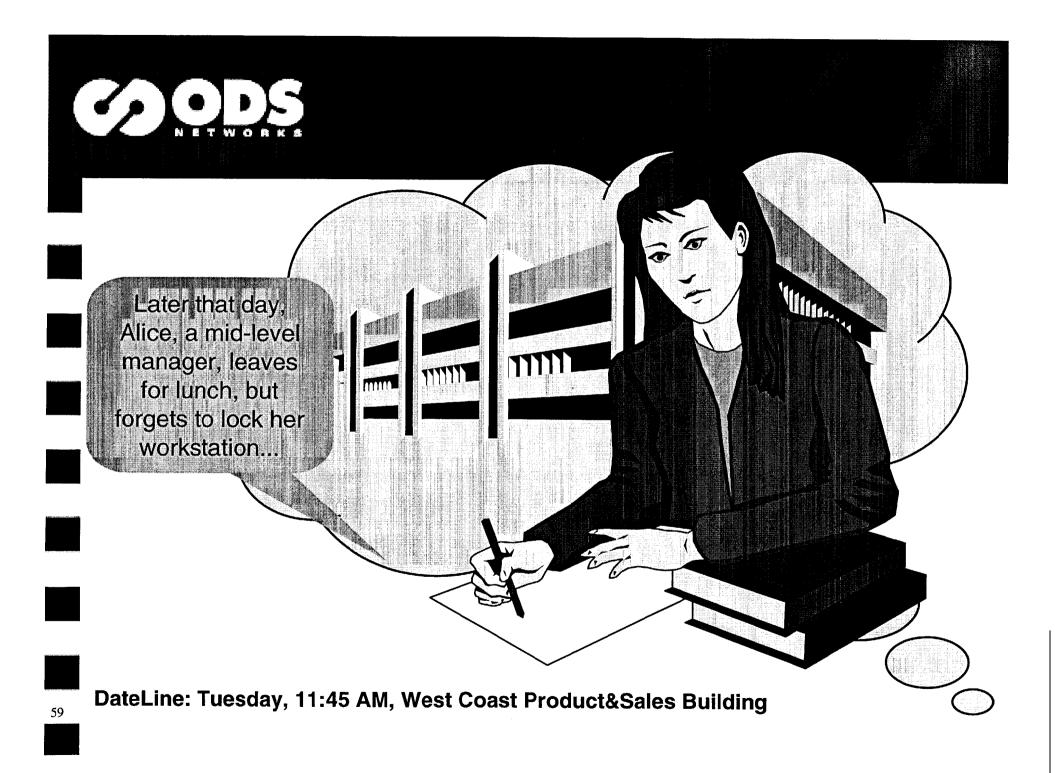


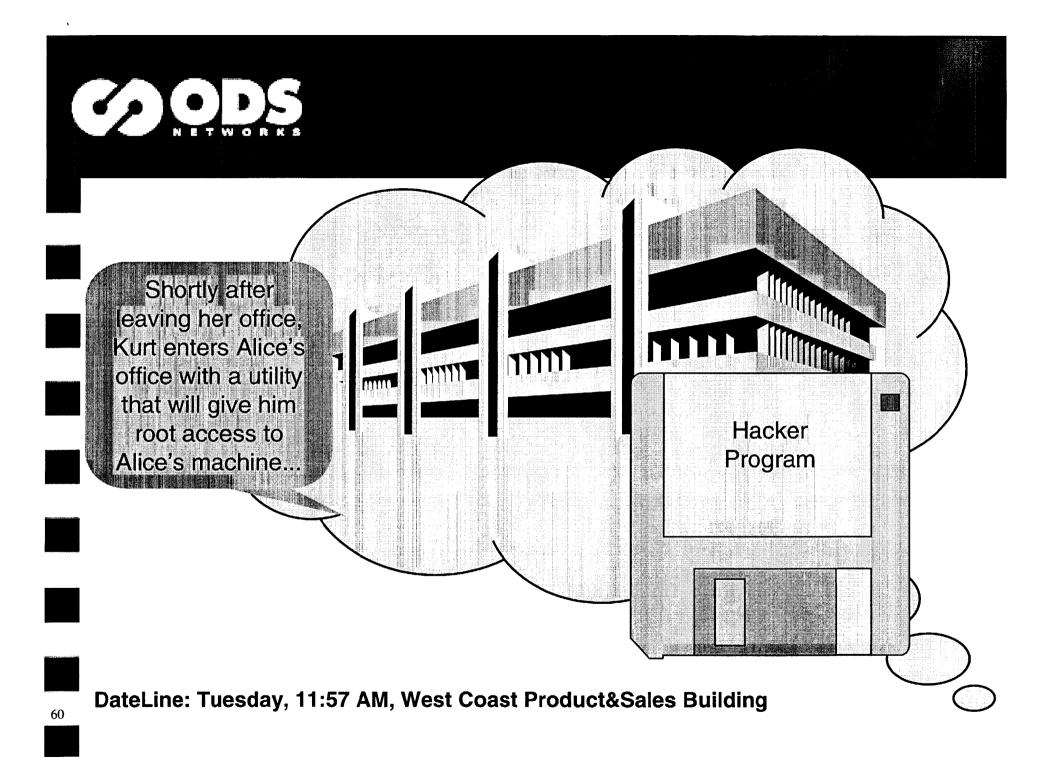
CMDS in Action

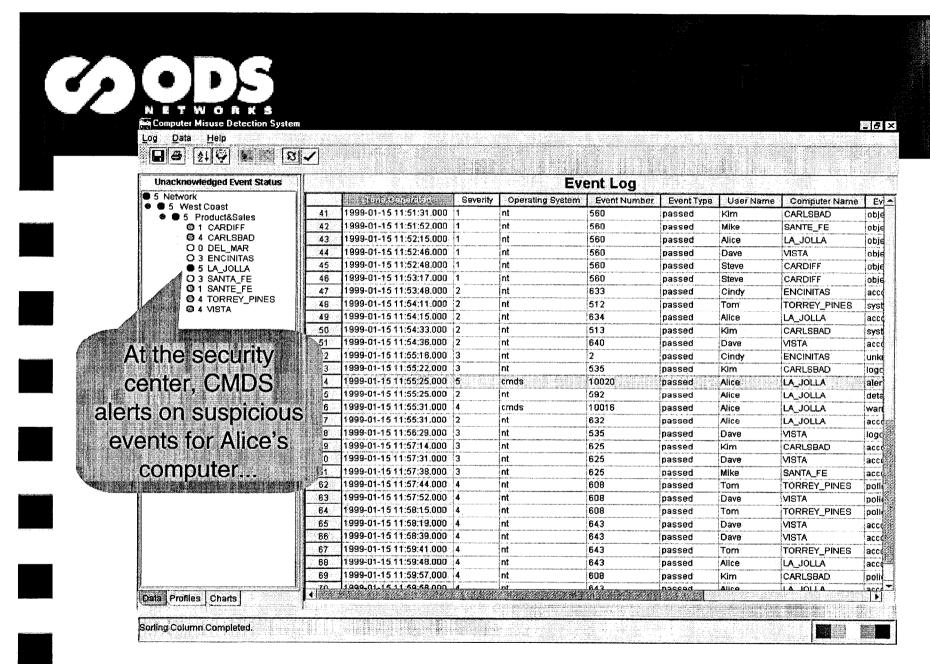

CAST: Alice: - Manager, Computer Security Officer: - Security, Kurt: - Disgruntled employee, Building Security

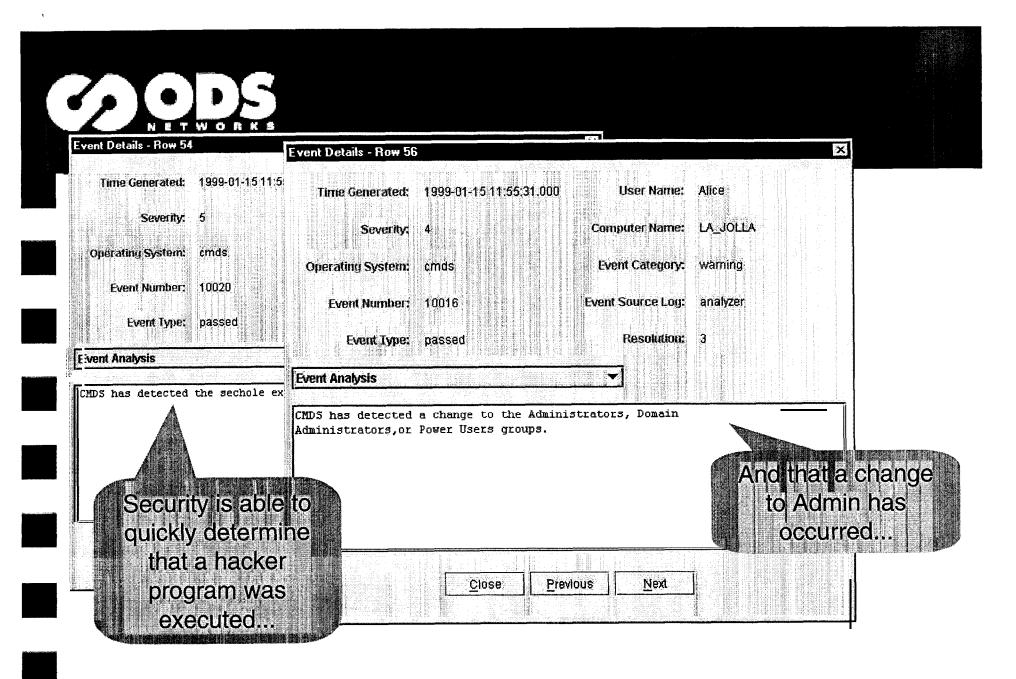


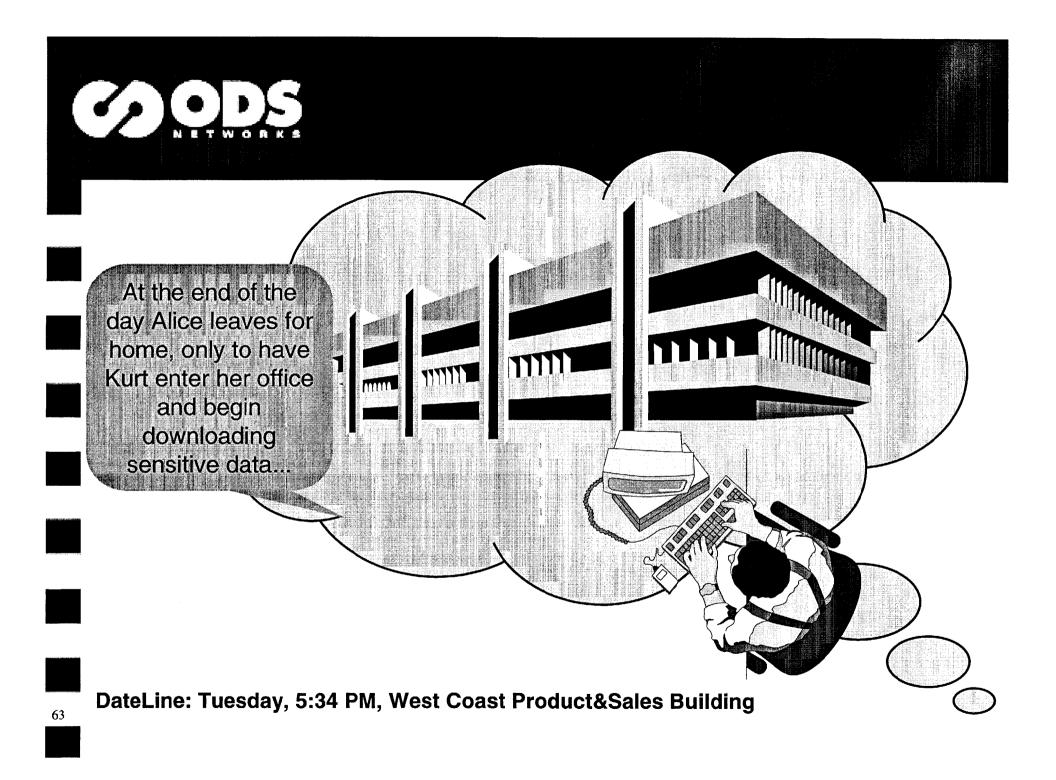

DateLine: Tuesday, 11:02 AM, West Coast Product&Sales Building

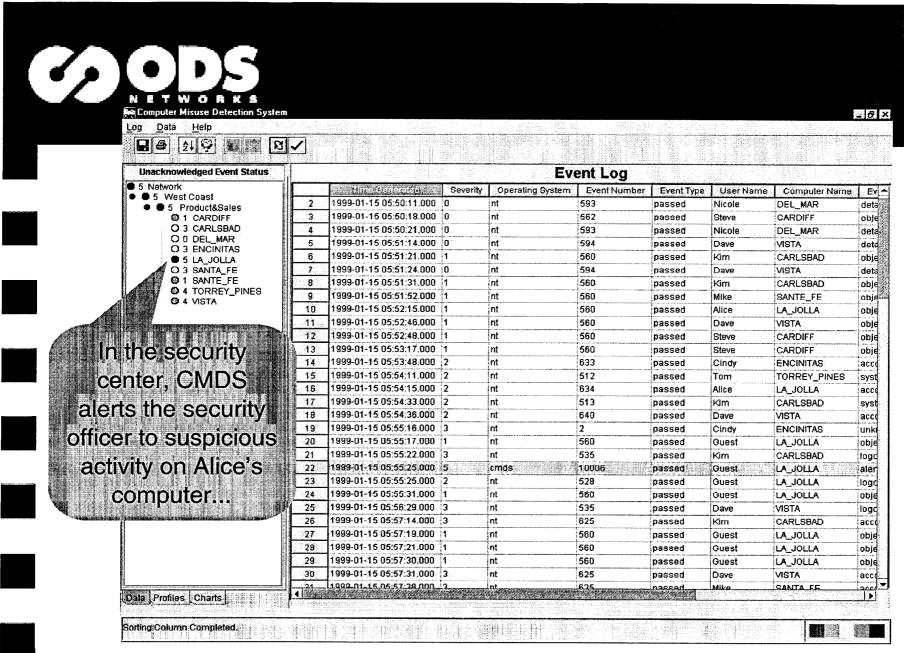

DateLine: Tuesday, 11:03 AM, West Coast Product&Sales Building



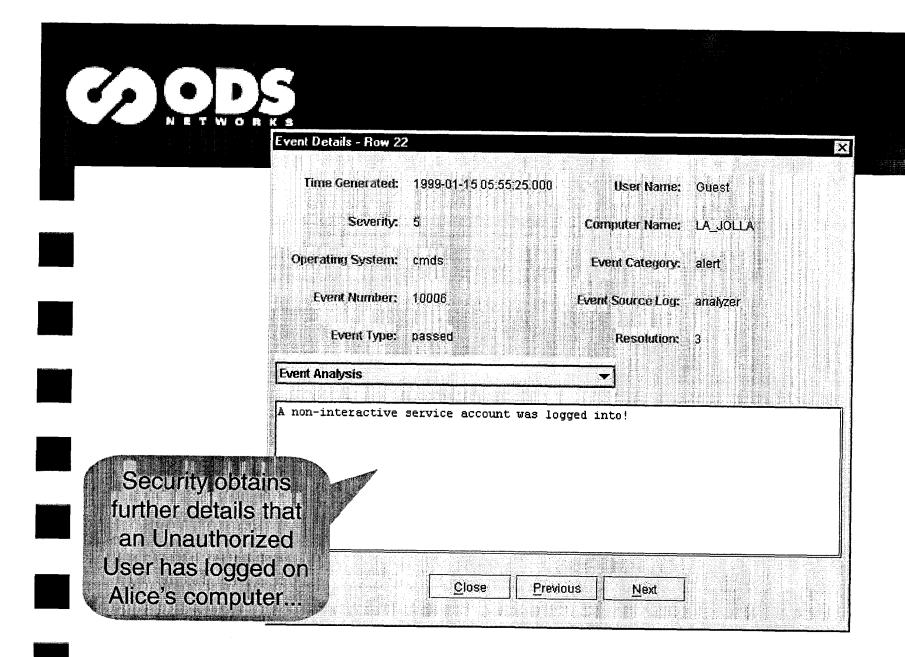

DateLine: Tuesday, 11:04 AM, West Coast Product&Sales Building


DateLine: Tuesday, 11:09 AM, West Coast Product&Sales Building

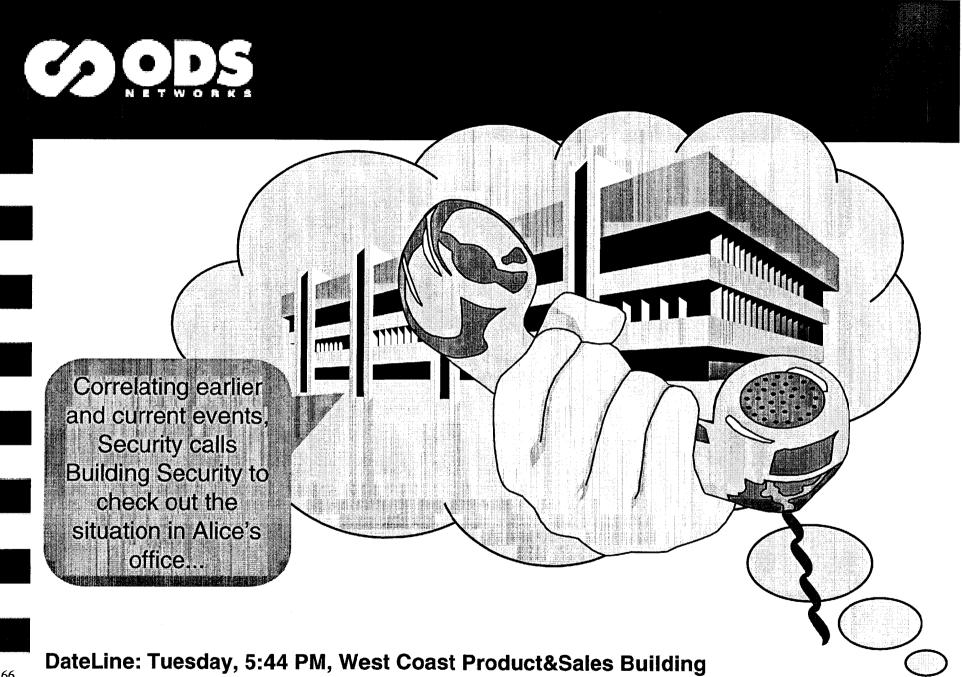


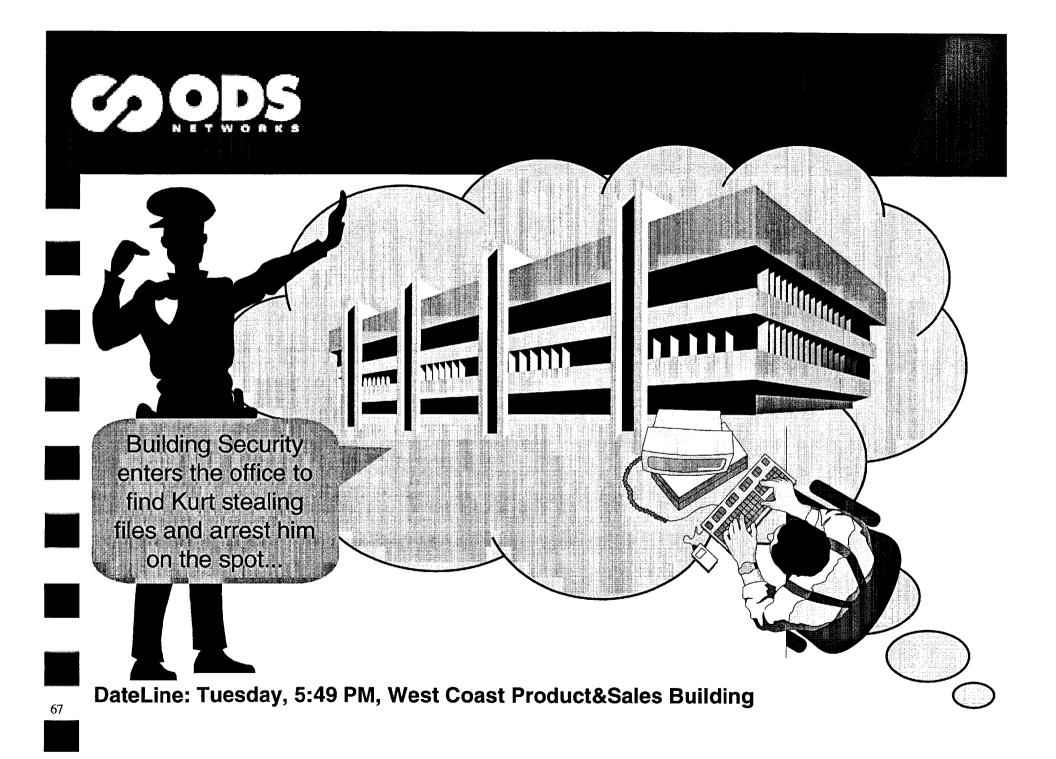


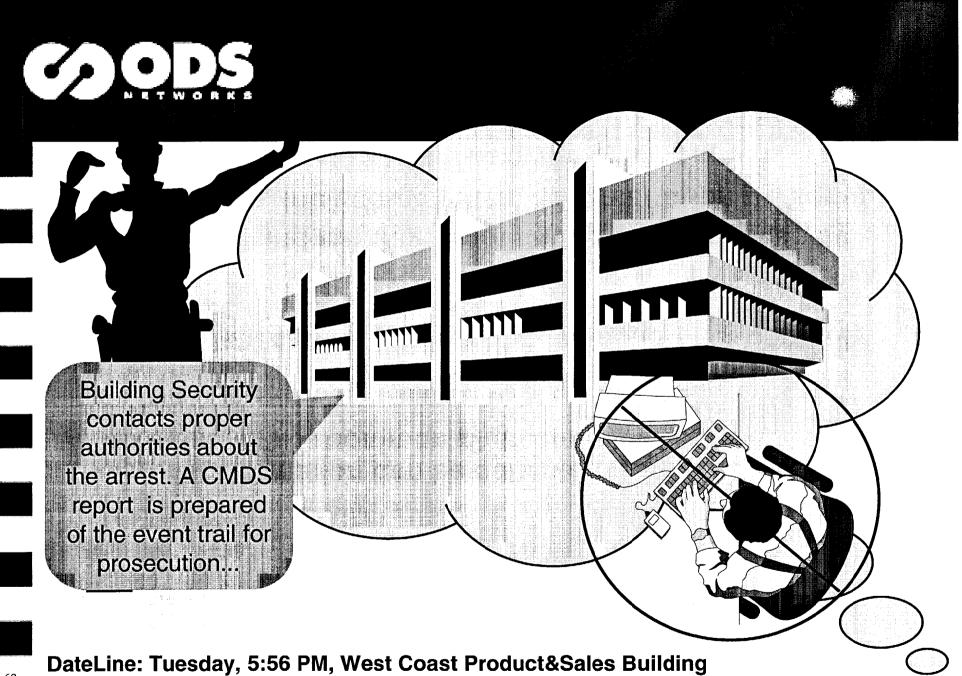
DateLine: Tuesday, 12:02 PM, West Coast Product&Sales Building



DateLine: Tuesday, 12:04 PM, West Coast Product&Sales Building






DateLine: Tuesday, 5:38 PM, West Coast Product&Sales Building

DateLine: Tuesday, 5:39 PM, West Coast Product&Sales Building

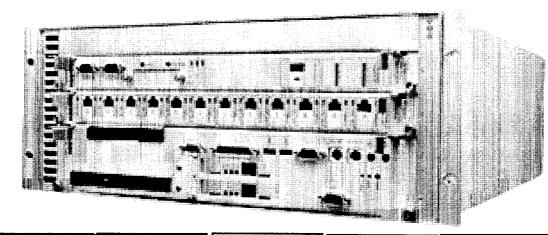
Benefits of CMDStm Enterprise

- Event information can be collected from disparate systems into a common platform
- Event data can be managed at its location or centrally
- Detection and monitoring of unauthorized access by employees, including system administration personnel

Benefits of CMDStm Enterprise (cont'd)

- Security policy monitoring on a 7X24 basis
- Profiles of user(s) dynamically created to identify account hi-jacking, - Last Line of Defense
- Archival & Retrieval of Raw Audit Data aids in the Contingency Planning Process

ODS Summary Topics


- Air Force and NATO deployments of SecureCom
- Integration of routers, firewalls, VPN, IDS, hosts, and a conversation aware infrastructure within the CMDS expert system.
- Questions on SecureCom and CMDS:
- Scaling Up to necessary Speeds, the McKinley engine project.
- · Questions.

SecureCom Security Platform, Alias: DMZ in a box, LAN in a can...

Network Connectivity
Pentium PC/Sun / HP Modules
ODS Security Software
Third Party Software, multi-port probe firmware.

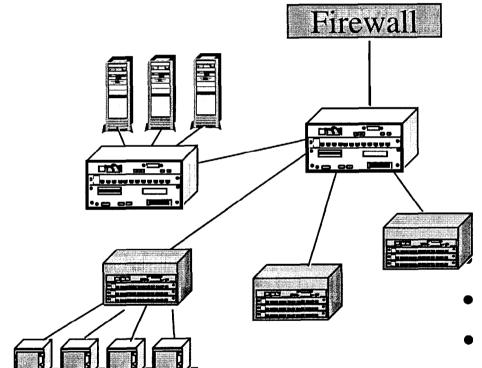
Easy To Install and Manage

Lean, Light, & Lethal

1.30%		100	447	
II	iras	+	_+	
11131	ı as	uu	CL	uit
	1 3.9	March, d.	112-9	. 11
		and	-4	
1.8		4114	11, 9	144
- Kii - K	-	-44	•	* 8.4
		aff	IC	KJ 40
	100	医二甲烷二		20.80
I A	1	:+~	ri m	
I N	lon	ILO	6 H (IU .
	FELIPS	\$2.3	25.5	D. C.
1.500				1
		100 E o 1		
	45 a 1959		104	
300	_/:164		32.	-Hell
1 7	Pro	tol	\mathbf{c}	n)
11 11	ט ניו	\cdot	,0	~/

Network & Host Based IDS (RealSecure) (NetRanger) (CMDS) (NFR)

NT, Sun, HP Servers (Flexible)



Current Speed Limits of Security

- Security management requires Layers 3, 4, and above
- Speed Limits of prior technology Existing IDS and Firewall Limits
 - ASICs and processor combinations limited to less than 100 Mb/s
- How to manage and secure at Gigabit and Terabit LAN speeds?
 - Can't drink from a fire hose without specialized hardware
 - Analysis at 1 Gb/s and above
 - ODS String Search Engine as a firewall, IDS, profiler on steroids

Typical Challenges in Today's Environment

- Server & Users
 - Fast Ethernet
 - OC3/OC12
 - Gig Ethernet or Fiber Channel
 - Hippi 800
 - GSN / 10 Gig Ethernet

Over-subscription: where?

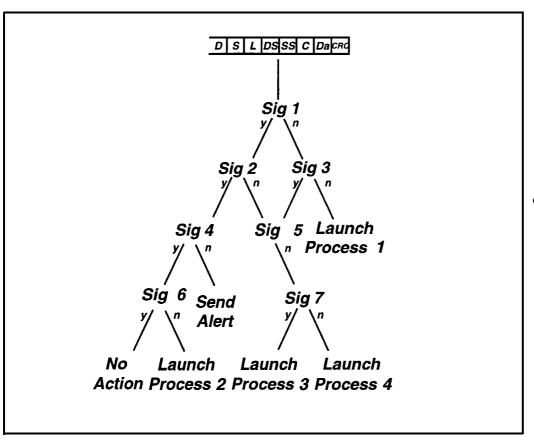
- Trunking
- Where billing and security?

ODS String Search Engine

- Hardware Joshua Tree
- 3 Year Development
- Full 7 Layer Decoding
- First Prototype: 2.2 Mpps with 1 Million Strings
- Production ASIC: 12 Mpps with 1+ Million Strings
- Pattern matching scalable to fit any requirement

Applications of String Search Engine

- 1 Gb/s conversation analysis for OC3/12, GE, Hippi 800
- OC12 and GE Encryption box
- GSN or 10 Gigabit Probe
- Hardware CERT Attack Filter
- Custom Probes for specialized data selection and collection
- Gigabit Firewall that also provides full IDS, billing, and upper layer decodes to feed user profile analysis for habit monitoring by CMDS.


High Speed Packet Engine (HSPE)

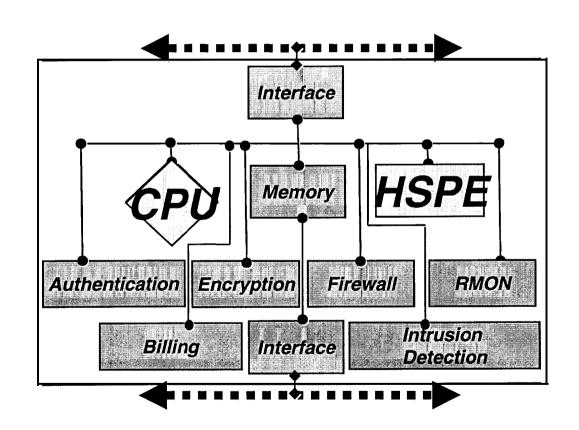
Hardware Components

- Hardware Interface, memory, packet engine, & CPU
- Hardware can be integrated to other processes
 - RMON, Firewall, Encryption, Authentication, Routing, Switching
- Simple Program Language
 - Tells engine where to look in packet; bit(s)/bytes or range
 - Recognizes patterns found in packet and matches to programmed signatures
 - Conversation pairs, packet data, protocol analysis, data descriptions
- Provides Descriptors
 - Allows commands to be sent when matches found
 - Match handle is a 24 bit number
 - Internal counters can accumulate statistics of each match

Flexible Pattern Recognition & Response

Pattern Recognition

- Simple single patterns bit or byte
- Complex patterns or ranges
- Nested patterns
- Pattern Response
 - Send descriptor to
 - . Log
 - Alert
 - Launch process
 - Look for next pattern



HSPE Signatures

- High Speed Packet Filtering
 - Packet filtering rate of 700,000 to 5 million packets per second
- Numerous Signatures can be Programmed
 - From 100,000 to 1 million signatures
 - Simple, complex or nested signatures
- Looks Anywhere in the Packet
 - Can be programmed to look for bit/byte patterns in packet header, payload, or, over multiple packets

HSPE Architecture

HSPE Advantages

- Provides Wire-Speed Filtering
 - Reviews packets at over Gigabit speeds
 - Finds matches in packets with pre-defined signatures
 - When matches found sends "commands" to other processes based on pre-set filter criteria
- Can be Attached in Numerous Ways
 - As a faster Firewall, IDS, or user profiler
 - In between "Up-links" between switches or routers
 - At connection points LAN to LAN, LAN to WAN, WAN to WAN
- Only hope above 100 Mb/s. Runs currently at 2 Gb/s, scales to 10 Gb/s links.

Contact Information

- Dave Steinman DC
 - DC Special Programs Manager
 - dsteinman@ods.com
 - 7031506-I 167
- Mike Celiceo San Diego
 - CMDS Product Specialist
 - mceliceo@ods.com
 - (619) 2684236 ext. 2232
- Joe Head Dallas
 - Executive VP
 - head @ods.com
 - **972/301-3636**